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Abstract

Nerve growth factor (NGF) is an essential protein for supporting growth and maintenance of

peripheral sympathetic neurons. A novel diterpenoid erinacine, isolated from the cultured mycelia of

Hericium erinacium, is known to have a potent stimulating effect on NGF synthesis. The effects

of erinacine and related compounds in the brain in vivo are not known. In this study, we examined the

effects of erinacine A on the production of NGF and catecholamines which stimulate NGF synthesis in

the brain of rats. Rats were treated with erinacine A by intubation for the first 3 weeks from birth to

weaning and intragastrically from weeks 4 to 5. Rats treated with this compound had increased levels of

both noradrenaline and homovanillic acid in the locus coeruleus (LC) at 4 weeks of age and increased

levels of NGF in both LC and hippocampus at 5 weeks of age. The effects of erinacine Awere confirmed

in the central nervous system in rats.
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1. Introduction

Nerve growth factor (NGF) is an essential protein for supporting the growth and

maintenance of peripheral sympathetic neurons as well as facilitating the development of
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some sensory neurons for a brief period during early development [1]. NGF and its mRNA

were barely detectable at birth, but their concentrations increased to peak levels at weaning [2].

In vivo NGF cannot penetrate the blood-brain barrier. Studies indicate that low–molecular-

weight hericenones C-H from the fruiting bodies of Hericium erinaceum and erinacines A-I

from the mycelia of the fungus stimulate NGF synthesis [3-8]. However, most of the

experiments testing erinacines have been conducted in vitro, and few studies evaluated these

compounds in the brain in vivo.

In this study, we examined the effects of erinacine A on the production of NGF in various

brain regions of rats administered erinacine A. It has been demonstrated, using mice, that

catecholamines stimulate NGF synthesis in an established fibroblast cell line, the L-M cell line

[9]. Therefore, we also examined the effects of erinacine A on production of catecholamine in

various brain regions both with and without the administration of erinacine A.
2. Methods and materials

Wistar strain female rats on day 14 of pregnancy were obtained from Japan SLC, Inc

(Hamamatsu, Japan). Upon arrival, all rats were fed the 25% casein diet (AIN 76). The

composition of the experimental diet is shown in Table 1. All rats, together with their pups,

were maintained at 248C with a 12-hour light/dark cycle and were provided free access to food

and water. Twenty pups were divided into 2 groups (10 per group) immediately after birth;

both groups of pups received an oral solution daily. The control group received 5% ethanol in a

saline phosphate buffer (10 mL/kg body weight), and the treatment group received a solution

of erinacine A (8 mg/kg body weight) dissolved in 5% ethanol and saline phosphate buffer.

After weaning, all pups were fed the 25% casein diet, identical to that of their pregnant dams

(Table 1). Two control groups, 4 and 5 weeks old, were given intragastrically (IG) a solution of

5% ethanol in a saline phosphate buffer (10 mL/kg body weight), and 2 erinacine A groups

(identical age and sample size) were given IG the solution (8 mg/kg body weight). All IG

administrations were done 5 times at 12-hour intervals.

After the last administration, the rats were decapitated in the anesthetized condition, and

the various brain regions were weighed, frozen, and stored at �808C until analyzed. The use
Table 1

Composition of the experimental diet

Ingredient Diet (g/kg)

Casein 250

Corn starch 392

Sucrose 196

Cellulose 50

Corn oil 50

Mineral mixturea 50

Vitamin mixtureb 10

Choline-Cl 1.5

All ingredients except for corn oil were purchased from Oriental Yeast Co, Ltd (Tokyo, Japan).
a AIN-76 mineral mixture.
b AIN-76 vitamin mixture.
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of animals and the protocol were approved by the Animal Care and Use Committee of the

University of Shizuoka.

The monoamine content was measured in the following brain regions of the rat at 4 weeks of

age: the cerebral cortex, cerebellum, striatum, locus coeruleus (LC), hippocampus, amygdala,

brain stem, and hypothalamus. Tissues were sonicated in 1 mL 0.1 N perchloric acid solution.
Fig. 1. Monoamine content in the locus coeruleus of rats fed the 25% casein diet simultaneously administered with

(n = 5) or without erinacine A (n = 5). Values are meanF SEM. *Significantly different from the control (P b .05).
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After centrifugation at 15000g for 10 minutes, the supernatant was filtered through a 0.45-lm
syringe filter (TOYO cellulose acetate; Toyo Roshi, Tokyo, Japan) and injected into a high-

performance liquid chromatography for neurochemical analysis.

NGF content was measured in the following rat brain regions: olfactory bulb, LC,

hippocampus, and the cerebral cortex, at 5 weeks of age. The tissues were homogenized

with 19 mL/mg wet weight of homogenizing buffer (0.1 mol/L Tris-HCl, pH 7.6, containing

1 mol/L NaCl, 2 mmol/L EDTA, and 80 U/L aprotinin) with a sonicator at 48C. The sonicates
were centrifuged at 100000g for 1 minute at 08C, and their supernatants were used for NGF

assay by enzyme immunoassay.

Data are presented as means F SEM. Statistical analysis was performed by Student t test.

Differences between the 2 groups were considered significant at P b .05.
3. Results

The mean body weights of rat pups in the erinacine A and control groups at 4 weeks were

73.5 F 1.6 and 71.9 F 2.2 g, respectively. The mean total brain weights were 1.54 F 0.02

and 1.57 F 0.02 mg, respectively, for the same 2 groups. There was no significant difference

in body and total brain weights between the 2 groups.

Monoamine content in the LC of rats fed the 25% casein diet, simultaneously administered

with or without erinacine A, is shown in Fig. 1. In LC, 3-hydroxytyramine (dopamine) levels

were unchanged, but its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and

homovanillic acid (HVA), were significantly higher in the treated group than those of the

control group. Noradrenaline (NA), which is mainly produced in the LC, was significantly
Fig. 2. NGF content in the brain of rats fed the 25% casein diet simultaneously administered with (n = 5) or

without (n = 5) erinacine A. OLB indicates olfactory bulb; Hip, hippocampus; CC, cerebral cortex. Values are

mean F SEM. *Significantly different from the control (P b .05).
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different between the erinacine A and control groups. There was no significant difference in the

amounts of 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxytryptamine (5-HT), and 5-HT +

5-HIAA (5-HIs) in the LC between the 2 groups (Fig. 1). For other brain regions, there was

no significant difference in monoamine content between the 2 groups.

The mean body weights of rat pups in the erinacine A and control group at 5 weeks of age

were 102.5F 2.7 and 99.6F 2.4 g, respectively. Themean total brainweights were 1.62F 0.03

and 1.60F 0.02 mg , respectively, for the same 2 groups. There was no significant difference in

body and total brain weights between the 2 groups.

The effects of erinacine A on NGF in various brain regions in 5-week-old rats are shown in

Fig. 2. The NGF content in the LC and hippocampus of the erinacine A–treated group was

higher than that in the control group (Fig. 2). NGF content in the olfactory bulb and cerebral

cortex was not significantly different between the control and erinacine A–treated group.
4. Discussion

In this experiment, rats treated with erinacine A from birth to weaning and also at 4 weeks of

age had significantly different amounts of DOPAC, HVA, and NA in the LC, compared with

the control group. At 5 weeks of age, the erinacine A group had significantly higher amounts

of NGF in the LC and hippocampus, compared with the control group. Previous studies have

reported that erinacine A increases NGF in astroglial cells [5]; however, these experiments

were conducted in vitro. In our study, the effects of erinacine A on NGF content were con-

ducted in vivo.

There are 2 possible explanations for the observations in studies using erinacine A. First,

erinacine A stimulates production of NA enhancingNGF secretion in the LC and hippocampus.

This is supported by research indicating that NGFmRNA is in the hippocampus, midbrain, and

brain stem in adult rats [10]. NA has not yet been found to influence synthesis of neurotrophin,

but a variety of observations predict that this neurotransmitter may well regulate the expression

of NGF. For example, adrenergic receptors have been identified in astrocytes [11,12], and NA

has been shown to regulate neurotrophin synthesis in whole brain and hippocampal astrocytes

[13-15]. Because adrenergic receptors are also present in hippocampal neurons [16,17], it is

possible that NA may similarly regulate neurotrophin synthesis in glial and neuronal cell

populations in the hippocampus. One report suggests that the number of synapse connections in

the hippocampus-septal system reaches adult level at weaning [17], and neurotrophins and

neurotransmitters may collaborate to influence neuron and glial growth, survival, and function

[18]. In this experiment, the LC-hippocampal system may be similarly regulated.

Second, it has been suggested that erinacine A increases the amounts of neurotrophin 3

(NT-3) in the LC and survival of noradrenergic neurons and also increases NA synthesis in the

LC. NA in the LC stimulates NGF synthesis in the hippocampus. Experiments using cell culture

models have revealed that although developing locus neurons were not influenced by NGF,

they were responsive to neurotrophins NT-3 and NT4/5 [19]. Furthermore, high quantities of

the enzyme tyrosine kinase C are found in the LC. Therefore, it is also expected that erinacine A

stimulates NT-3. Moreover, NT-3 regulates NA transporter functions by creating an increase in

NA transporter mRNA levels. NA transport regulates differentiation of noradrenergic neurons

in the LC by promoting expression of tyrosine hydroxylase and dopamine b-hydroxylase. It has
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also been reported that NT-3 elicited significant increases in survival of noradrenergic LC

neurons [19]. NA stimulated NGF synthesis in the LC and hippocampus in our rat study.

In both explanations, it is suggested that the accumulation of NGF in the hippocampuswould

result in retrograde transport from LC as well as local synthesis. From our results, it is also

intriguing to consider that erinacineAmay affect neurotransmitter-neurotrophin collaborations,

in particular, interactions of noradrenergic LCwith the hippocampus [20,21], which degenerate

in Alzheimer disease [22-24], suggesting that it may be regulated in a coordinated manner.

However, further research is required for a more in-depth understanding of these results. There

is no evidence that erinacine A is absorbed into the blood and crosses the blood-brain barrier or

is localized in the brain tissue. To address this question, the concentration of erinacine A in the

brain and blood must be measured.

In conclusion, erinacine A increased catecholamine and NGF content in the central

nervous system of rats. Hence, it is a possible candidate for designed foods to stimulate

NGF synthesis.
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